In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

نویسندگان

  • Huan Fang
  • Huina Dong
  • Tao Cai
  • Ping Zheng
  • Haixing Li
  • Dawei Zhang
  • Jibin Sun
چکیده

In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of biocatalytic synthesis of Chitosan Ester using response surface methodology

Esterification of chitosan with adipic acid catalyzed by immobilized Candida antarctica lipase B was carried out in this study. Response surface methodology (RSM) based on a four-factor- five-level small central composite design (SCCD) was employed to model and analyze the reaction. A total of 21 experiments representing different combinations of the four reaction parameters including ch...

متن کامل

Optimization for high level expression of cold and pH tolerant amylase in a newly isolated Pedobacter sp. through Response Surface Methodology

Amylase is one of the most widely used enzymes in the industry. Cold environments are the most ubiquitous environments in the world that have been occupied by cold tolerant microorganisms. The enzymes of these microorganisms have a wide range of applications in various areas of biotechnology. The aim of this study was to isolate cold-active amylase producing bacteria. A total of 64 cold-toleran...

متن کامل

Response Surface Methodology for Optimization of Green Silver Nanoparticles Synthesized via Phlomis Cancellata Bunge Extract

Green synthesis of metal nanoparticles is an interesting issue of nanoscience due to its simplicity and eco-friendliness. The present study describes a cheaper, non-toxic and simple route for biosynthesis of Silver nanoparticles using Phlomis cancellata Bunge extracts. Since the experimental conditions of this procedure play vital roles in the synthesis rate of the nanoparticles, a response sur...

متن کامل

Optimization of Swelling Percentage of Poly(AAm-co-AA) in BaCl2 Salt Solution Using Response Surface Methodology (RSM)

: Unwanted water production from oil and gas reservoirs is a serious problem for producers. Preformed particle gel (PPG) treatment is a benefit approach to control excess water production. Swelling percentage of PPG samples in saline water is a key factor affecting the efficiency of the water conformance process. In this study, an efficient series of PPGs were synthesized and their swelling beh...

متن کامل

Hydrothermal synthesis of surface-modified copper oxide-doped zinc oxide nanoparticles for degradation of acid black 1: Modeling and optimization by response surface methodology

Dyes are widely used in various industries most of them are not readily biodegradable and are consisted of number of toxic, mutagenic, and carcinogenic compounds. Therefore, it is essential to remove them from effluent before their discharge to the environment. The objective of this investigation was to synthesize copper oxide (CuO) doped zinc oxide (ZnO) nanoparticles under mild hydrothermal c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2016